The Vision of the Semantic Web

Michael Sintek
sintek@dfki.de

DFKI GmbH Kaiserslautern & Stanford University

MedCIRCLE Workshop
Brussels, September 12, 2002

The Semantic Web

• coined by Tim Berners-Lee (1997)

• “The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation.”

 – T. Berners-Lee, J. Hendler, O. Lassila,
The Conventional Web

- Invented by Tim Berners-Lee in 1989
- Central idea: combination of
 - Hypertext
 - Internet
- URI: global identifiers
- HTTP / HTML: protocol for / representation of hypertext documents
- Allows browsing of (mainly static) information with help of search engines (like Google) and portals/directories

Goals of the Semantic Web

- Machines “understand” and process information

 “The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users.”

 – T. Berners-Lee, J. Hendler, O. Lassila,
Example: Doctor’s Appointment

Mom

Insurance Co.
Rating
Provider sites

Physician’s Agent
required treatment
in-plan? close-by? specialist?
schedule appointment
driving schedule

Lucy’s Agent

Pete’s Agent

Semantic Web Enabled Web Services (SWWS)

Fensel, Bussler: IST Project, Start August 2002

“Bringing the Web to its full potential”

Web Services
UDDI, WSDL, SOAP

Intelligent Web Services
WSFL -> WSMF DAML-S

Static

Dynamic, Active

WWW
URI, HTML, HTTP

Semantic Web
RDF, RDFS, DAML+OIL, OWL

Formal Semantics

(c) 2002 DFKI GmbH - Knowledge Management Group - Michael Sintek
The Semantic Web “Layer Cake”

Web Languages for Knowledge Capturing

- Human knowledge is (partially) captured on the Web as informal texts, semiformal documents, and structured metadata.
- Each kind of knowledge has its (preferred) markup language.

Knowledge: Informal Semiformal Metadata
Language: HTML XML RDF
Web Languages for Machine Interpretation

- **XML (Extensible Markup Language):**
 Semiformal documents range between *non-formatted texts* and *fully formatted databases*

- **RDF (Resource Description Framework):**
 Structured metadata describe arbitrary *heterogeneous* Web pages/objects in a *homogeneous* manner

Machines (e.g., search engines) can analyze XML or RDF markups better than full HTML

Address Example: External to HTML to XML

Presentation vs. Structure
Address Example: XML to RDF

XML

```xml
<address>
  <name>Xaver M. Linde</name>
  <street>Wikingerufer 7</street>
  <town>10555 Berlin</town>
</address>
```

RDF

```xml
<ont:Address>
  <ont:name>Xaver M. Linde</ont:name>
  <ont:street>Wikingerufer 7</ont:street>
  <ont:town>10555 Berlin</ont:town>
</ont:Address>
```

Structure vs. Semantics

RDF—Resource Description Framework

- Statements of the form `<subject, predicate, object>`
- subject, predicate, object are URIs, objects can also be literals (strings)
- Has graph representation and several XML representations/serializations, e.g.:

```xml
<ont:Address>
  <ont:name>Xaver M. Linde</ont:name>
  <ont:street>Wikingerufer 7</ont:street>
  <ont:town>10555 Berlin</ont:town>
</ont:Address>
```
Ontologies, RDFS

- RDF just defines the data model
- Need for definition of vocabularies for the data model—an ontology language!
- What is an ontology?
 An ontology is a specification of a conceptualization.
 - Tom Gruber, 1993
- Ontologies are social contracts
 - Agreed, explicit semantics
 - Understandable to outsiders
 - (Often) derived and maintained in a community process
- Ontologies require knowledge representation
 - Is-a hierarchy, part-of, attributes, axioms, ...
- RDFS: RDF Schema as simple ontology language

RDFS: Simple OO/Frame Language

- Similar to class system in OO programming languages (like Java or C++) or UML
- Classes = sets of objects ("instances"):
 - rdfs:Class
- Instances = members of classes:
 - rdf:type (already in RDF)
- Specialization: a class is a subclass of another:
 - rdfs:subclassOf
- Properties (attributes, slots) attached to classes:
 - rdfs:Property
 - rdfs:domain & rdfs:range
 - rdfs:label, rdfs:comment, etc.
RDFS: Example

- `s` = rdfs:subClassOf
- `t` = rdf:type

RDF/S: Jump Starters I

- dim.o (human-edited directory)
- MusicBrainz.org (music encyclopedia)
- RSS (RDF Site Summary)
- (embedded metadata)
- CC/PP (Composite Capability/Preference Profiles)
- P3P (Platform for Privacy Preferences)
RDF/S: Jump Starters II

- B2B Vocabulary Projects
 - PapiNet.org: Vocabulary for paper industry
 - BPMI.org: Vocabulary for exchanging Business Process Models
 - XML-HR: Vocabularies for human resources (HR)
 - DMTF (Distributed Management Task Force): vocabularies for managing enterprises
 - …

- Research Vocabulary Projects
 - GeneOntology Working Group (http://www.geneontology.org/)
 - HIDDEL
 - MathNet
 - …

Protégé-2000 as RDF/S-Editor
DAML+OIL and OWL

• DARPA DAML project: DAML+OIL
• Web Ontology Working Group: OWL
• Higher expressiveness than RDF Schema:
 – Class Expressions (Intersection, Union, Complement)
 – XML Schema Datatypes
 – Property restrictions
 • Cardinality constraints
 • Value restrictions
 – Axioms: equality, transitivity, …

DAML+OIL/OWL: Informal Examples

• mother = woman with child
• herbivore = animal which is not a carnivore and which eats things which are plants or parts of plants
Queries, Rules, Inferences

RDF Query and Rule Languages

- Motivation: “The Semantic Web is an extension of the current web …, better enabling computers … to work in cooperation.”
- Agents exchange RDF data/schemas and DAML+OIL/OWL ontologies etc. and have to query/process/map between them
- Various query/rule languages on top of RDF exist:
 - SiLRI, RDQL, RQL, DQL, N3/cwm, Squish, TRIPLE
Need for a *Combined* RDF Query, Inference, and Transformation Language: TRIPLE

<table>
<thead>
<tr>
<th>RDF characteristics</th>
<th>Need for</th>
</tr>
</thead>
<tbody>
<tr>
<td>- meta-data for data/documents on the web (e.g., Dublin Core)</td>
<td>- search, intelligent information retrieval, navigation</td>
</tr>
<tr>
<td>- ontologies (vocabularies for meta-data)</td>
<td>- checking (inst. – ontology), ontology mapping</td>
</tr>
<tr>
<td>- exchanged between “agents” (e.g., e-commerce, Web Services)</td>
<td>- data transformation and integration</td>
</tr>
</tbody>
</table>

- Needed: *query, inference, and transformation* language for RDF
- TRIPLE: joint work with Stefan Decker (ISI)

TRIPLE Example: Dublin Core

```plaintext
dc := "http://purl.org/dc/elements/1.0/".
dfki := "http://www.dfki.de/".

@dfki:documents {
  dfki:d_01_01 [
    dc:title → TRIPLE;
    dc:creator → "Michael Sintek";
    dc:subject → RDF;
    dc:subject → triples; ... ].
}

∀ P(rdf:type → xyz:Person; xyz:name → N) ←
  ∃ D[dc:creator → N].

```

(c) 2002 DFKI GmbH - Knowledge Management Group - Michael Sintek
(Semantic) Web Services

- Public process description and advertisement
 - WSDL: Web Services Description Language
 - UDDI: Universal Description, Discovery, and Integration of Business for the Web
 - (SOAP: Simple Object Access Protocol)
- Discovery and Composition of Services
 - DAML-S
 - WSFL: Web Services Flow Language

Web Services: Future Work

- Ontologies & Inferences
 - State of the art: person browses web service descriptions and composes manually
 - Goal: automatic discovery and composition
 - Solution: semantically rich descriptions (via ontologies) and inferences
- Decentralization, P2P
 - State of the art: UDDI = central registry
 - Decentralization needed to avoid
 - Single point of failure
 - High costs
 - Slow reaction (info out of date)
 - Solution: P2P (Peer-to-peer) network of Web Services
Web of Trust

- P3P: Platform for Privacy Preferences Project
 - Web sites describe their policy for handling private information
 - P3P-enabled browsers compare this to the user’s preferences
- PGP: Pretty Good Privacy (private/public key)
- Future:
 - assign degree of trust to relations + (partial) transitivity
 - rules/inferences/proofs

Web of Trust: Technologies
Evolution of Knowledge

• “If properly designed, the Semantic Web can assist the evolution of human knowledge as a whole.”

• Small groups innovate rapidly, but produce subcultures whose concepts are not understood by others

• Semantic Web will help in joining together these subcultures

Thank you for listening